
PHYSICAL REVIEW E 96, 012907 (2017)

Propulsion via flexible flapping in granular media
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Biological locomotion in nature is often achieved by the interaction between a flexible body and its surrounding
medium. The interaction of a flexible body with granular media is less understood compared with viscous fluids
partially due to its complex rheological properties. In this work, we explore the effect of flexibility on granular
propulsion by considering a simple mechanical model in which a rigid rod is connected to a torsional spring that
is under a displacement actuation using a granular resistive force theory. Through a combined numerical and
asymptotic investigation, we characterize the propulsive dynamics of such a flexible flapper in relation to the
actuation amplitude and spring stiffness, and we compare these dynamics with those observed in a viscous fluid.
In addition, we demonstrate that the maximum possible propulsive force can be obtained in the steady propulsion
limit with a finite spring stiffness and large actuation amplitude. These results may apply to the development of
synthetic locomotive systems that exploit flexibility to move through complex terrestrial media.
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I. INTRODUCTION

Biological locomotion in nature, such as the swimming
of micro-organisms in fluids [1,2] or the flying of birds
in air [3], is often achieved by the interaction between a
flexible body and its surrounding environment. Despite the
diversity in their material composition or internal anatomy,
organisms often exhibit bending deformation during motion in
fluids [4]. Due to its fundamental significance in understanding
natural locomotion as well as its potential applications in
the design of artificial locomotive systems, there has been
considerable interest in how to exploit flexibility for propulsion
enhancement.

For locomotion at high Reynolds numbers, such as the
swimming of fish and the flying of birds, various studies have
shown that flexibility can lead to improvements in propulsive
performance [3–11]. In particular, Moore [10] has shown that
optimal propulsion can be achieved by having a localized
flexibility arrangement at the front of the wing via a torsional
spring for small amplitude flapping.

In the low Reynolds number regime, where viscous forces
dominate and inertial forces are negligible, the role of flexibil-
ity in propulsion can be significant. A simple illustration is the
case of a filament immersed in a viscous fluid that is driven at
one end. No net propulsive thrust can be generated when the fil-
ament is rigid as constrained by Purcell’s scallop theorem [12],
because the motion is reciprocal (exhibiting time-reversal
symmetry); however, by introducing flexibility, bending de-
formations due to elastohydrodynamic interactions break the
time-reversal symmetry and lead to propulsion [13,14]. As a
mechanical model emulating flagellar locomotion, a flexible
slender filament that is driven by different boundary actuation
mechanisms or allowed to swim freely has been studied both
experimentally and theoretically [15–17]. For instance, the
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optimal uniform stiffness can be determined to maximize
the propulsive force or swimming speed for a given driven
mechanism. Meanwhile, various flexible artificial propellers
have been developed in recent years, such as nanowires and
DNA linked with magnetic beads, to understand swimming
behaviors at small scales [18–21].

Compared to swimming and flying in Newtonian fluids,
locomotion in terrestrial substances such as granular media
is less understood mainly due to their complex rheological
properties [22,23]. Nevertheless, there has been a developing
interest in modeling biological motion on or within granular
media, such as the subsurface undulatory swimming of
sandfish lizards [24,25]. Similar to the resistive force theory
in viscous fluids, Maladen et al. [24] developed an empirical
resistive force theory in dry granular media that was shown
to be effective in describing the dynamics of slender body lo-
comotion [22]. Employing this granular resistive force theory,
we recently characterized the complex swimming behavior
of finite slender swimmers by prescribing a deformation
waveform emulating those of sandfish lizards [26]. Despite this
progress, the role of flexibility on locomotion in granular media
remains largely unexplored. In this paper, we consider the
propulsion generated by a flexible body (flapper) deforming
due to interaction with a surrounding granular medium.

As a minimal model to understand the role of flexibility
in biological propulsion, the arrangement of a rigid rod
(or wing) coupled with a torsional spring, which represents
localized flexibility, has been studied in Newtonian fluids
across Reynolds numbers [8,10,27–31]. In this work, we
consider a torsional spring flapper as a simple mechanism that
employs flexibility to move in complex terrestrial media. We
characterize its propulsive performance arising from the inter-
play between elastic and granular forces, and we investigate
strategies to maximize the propulsive force generated.

The paper is organized as follows. We formulate our
problem and contrast the viscous and granular resistive force
models in Sec. II. Propulsive characteristics of the torsional
spring model in a viscous fluid are first discussed and then
compared and contrasted with propulsive forces generated in
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FIG. 1. (a) Schematic diagram of a displacement-driven rigid filament via a torsional spring connection. (b) Motion of the actuated rigid
filament in half-period (torsional spring not shown). The solid lines represent the downward motion (from y0 to −y0), with the opacity of the
lines decreasing from top to bottom. The orientation (angle) of the filament at a given time is determined by the interaction between elastic
torque and torque due to granular resistive force.

granular media (Sec. III). In Sec. IV, we discuss different
asymptotic regimes for the granular case. We conclude our
work with remarks in Sec. V.

II. SETUP

A. Flexible flapper

We consider a rigid filament of length L and radius r

connected to a torsional spring with a spring constant κ as
illustrated in Fig. 1. The filament is slender, r/L � 1, and it is
harmonically actuated in the horizontal plane (perpendicular
to the direction of gravity) at the torsional spring end. Under
this actuation, the motion of the filament is confined in the
x-y plane spanned by the basis vectors ex and ey while
ez = ex × ey . We define the position of a material point on the
filament at location s and time t as x(s,t), where s ∈ [0,L]
is the arclength along the centerline of the filament. The
local unit tangent and normal vectors are given by t = xs =
cos θex + sin θey and n = ez × t, where θ (t) is the angle
between t and ex , and the subscript s denotes differentiation
with respect to arclength.

At the actuation end, we specify a periodic displacement
x0 = y0 sin ωtey , where ω is the frequency and y0 the ampli-
tude of actuation. Since the filament is rigid, we may describe
the position of points along the centerline of the filament by
x = x0 + st for s ∈ [0,L] and then the velocity of those points
is u = ẋ0 + sθ̇n, where a dot denotes time derivative.

The governing equation for θ (t) is then given by a balance
of the torque due to resistive forces on the filament and the
elastic torque from the torsional spring,

ez ·
∫ L

0
(x − x0) × fds − κθ = 0, (1)

where f is given by the viscous force per unit length (fv) when
the surrounding environment is a viscous fluid, and by the
granular force per unit length (fg) if it is a granular medium.
Finally, the propulsive force generated by the motion of the

filament is given by

F = −ex ·
〈∫ L

0
fds

〉
, (2)

where the angular brackets indicate time-averaging over a
period of actuation.

B. Resistive force theory

In a Newtonian fluid, the viscous force experienced by a
slender filament at low Reynolds numbers can be approxi-
mated by a viscous resistive force theory (RFT) wherein the
viscous force per unit length along the body is given by

fv(s,t) = −(ξ‖tt + ξ⊥nn) · u. (3)

In other words, the viscous force density is linearly related
to the local velocity vector of the filament with tangential (ξ‖)
and normal (ξ⊥) resistive coefficients. We define the resistance
ratio as γ = ξ⊥/ξ‖. In the limit of an infinitely slender filament,
L/r → ∞, the resistance ratio γ = 2 [32,33].

Similar to the overdamped dynamics in fluids at low
Reynolds numbers, we consider the case in which the granular
medium is in a regime where grain-grain and grain-body
frictional forces dominate and inertial forces are negligible.
In this quasistatic regime, forces exerted by the surrounding
granular materials on the filament can be approximated by
the so-called granular RFT [24], which has been shown to be
effective in modeling locomotion of slender bodies in granular
media [22,25,26]. In recent work [34], Askari and Kamrin
explored the surprising effectiveness of RFT in granular media,
and they showed by dimensional analysis for flat, square
geometries with prescribed kinematics that the success of
the theory in grains arises from local frictional yielding, but
no theoretical validation of RFT for nontrivial surfaces that
deform under load yet exists.

The resistive force per unit length experienced by a slender
rod is given by

fg(s,t) = −C‖û · tt − C⊥(û − û · tt), (4)
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where û = u/‖u‖ is the direction of the velocity, and the
tangential C‖ and normal C⊥ resistive coefficients are related
to rheological parameters CS,CF ,γ0 of the granular medium
and the radius r of the rod [24]:

C‖ = 2rCF , (5)

C⊥ = C‖

(
1 + CS

CF

√
tan2 γ0 + (û · n)2

)
. (6)

We note that drag anisotropy (C⊥ > C‖) is present in granular
media and that the normal resistive coefficient depends on the
orientation of the rod with respect to the direction of motion
while the tangential coefficient is a constant. As opposed to
resistive force theory in viscous fluids, the resistive force in
granular media does not depend on the magnitude of velocity
due to its frictional nature. In this work, numerical values of
the aforementioned rheological parameters are adopted from
the work by Maladen et al. [24] for a loosely packed granular
medium.

C. Dimensionless equations

We nondimensionalize the governing equation (1) with
respect to the time scale ω−1 and length scale L. In granular
media, the two resulting dimensionless numbers characterizing
the dynamics of the filament under actuation are the dimen-
sionless amplitude b and dimensionless spring constant Kg,
where

b = y0

L
, Kg = κ

C‖L2
. (7)

The dimensionless spring constant Kg compares the magnitude
of characteristic elastic forces κ/L and granular resistive forces
C‖L. We may write the dimensionless governing equation as∫ 1

0
s(û · n)

(
1 + CS

CF

√
tan2 γ0 + (û · n)2

)
ds + Kgθ = 0.

(8)

The absence of ω in the dimensionless groups indicates
that the dynamics of this system are independent of the
actuation frequency. The corresponding dimensionless groups
and equations in the case of a viscous fluid are given in
Sec. III A.

III. PROPULSIVE CHARACTERISTICS

A. Viscous fluids

We first discuss the propulsive characteristics of the flexible
flapper in a viscous fluid in order then clearly to compare and
contrast with propulsion in granular media. In viscous RFT,
the force density is linearly proportional to the local velocity
vector. This linearity permits a simple description of this
dynamical system in a viscous fluid, with the (dimensionless)
governing equation for θ (t) given by [35]

Kvθ + 1
3 θ̇ + 1

2b cos θ cos t = 0, (9)

where Kv = κ/L3ξ⊥ω indicates the ratio of characteristic
viscous and elastic forces. One can show that the dimensionless

FIG. 2. Numerical (solid line) and large Kv asymptotic (dashed
line) solution to the propulsive force as a function of Kv when b = 1
in viscous fluids. Inset: small Kv asymptotic results (dashed line)
compared with the numerical solution.

propulsive force (scaled by L2ξ⊥ω) is given by

F = 1

2

〈
−θ̇ sin θ − b

γ − 1

γ
cos t sin 2θ

〉
. (10)

Once the motion is at steady state, the term −θ̇ sin θ averages to
zero as the motion is periodic. We then see that drag anisotropy,
γ �= 1, is required to achieve nonzero propulsion. Furthermore,
we expect an invariance of the propulsive force under a reversal
of the flapping b → −b given the symmetry of the steady-state
motion of the flapper.

One can easily solve the nonlinear governing Eq. (8) for
θ numerically, and integrate the viscous force to obtain the
propulsive thrust. As an example, we present in Fig. 2 the
numerical solution to the propulsive force in a viscous fluid as
a function of the spring constant Kv when the dimensionless
actuation amplitude b = 1. The numerical result (red solid
line) matches very well with the large Kv asymptotic solution
(blue dashed line) as given by Eq. (12). We note that for
a given spring constant Kv, the propulsive force in general
increases as the amplitude b increases, but there is an optimal
finite value of the spring constant for a given amplitude that
maximizes propulsion. The optimal propulsive force can be
readily predicted for small-amplitude forcing, b � 1, to be
at Kv = 1/3 to leading order [35]. To further elucidate the
behavior of this torsional spring propeller, we look at the
asymptotic regimes where the spring is very soft, Kv � 1,
and when the spring is very stiff, Kv 	 1.

When the torsional spring is very stiff (the weakly flexible
regime), we assume a regular perturbation expansion for the
angle θ = (1/Kv)θ1 + (1/K2

v )θ2 + O(1/K3
v ) and find that

θ1 = − 1
2b cos t, θ2 = − 1

6b sin t. (11)

The leading-order dimensionless propulsive force is then given
by

F = (γ − 1)b2

4γ

1

Kv
+ O

(
1

K3
v

)
. (12)

We see that flexibility is necessary for propulsion, as a
completely rigid rod, Kv → ∞, generates no propulsive force
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FIG. 3. (a) Numerical results of the propulsive force in granular media as a function of spring constant Kg for a dimensionless actuation
amplitude of unity (b = 1); insets: time evolution of the tangent angle θ (t) for different values of dimensionless spring constants Kg.
(b) Propulsive force as a function of the dimensionless actuation amplitude b for different values of Kg.

while the propulsive force is inversely proportional to Kv to
leading order. We also confirm that drag anisotropy (γ �= 1) is
required for propulsion, and the leading order term is even in
the amplitude, as expected.

Conversely, for the case when the torsional spring is instead
very weak, Kv � 1, we assume that θ = θ0 + Kvθ1 + O(K2

v ),
and we find that

θ0 = −2 arctan

[
tanh

(
3

4
b sin t

)]
, (13)

θ1 = sech

(
3

2
b sin t

)∫ t

0
h(t ′)dt ′, (14)

where the function

h(t) = 6 arctan

[
tanh

(
3

4
b sin t

)]
cosh

(
3

2
b sin t

)
. (15)

The propulsive force can then be written as

F = −b
γ − 1

γ
〈θ1 cos t cos(2θ0)〉Kv + O

(
K2

v

)
. (16)

Notice that a completely flexible hinge, Kv = 0, generates no
propulsive force and that the propulsive force is even in the
amplitude. The agreement between the small Kv asymptotic
solution (blue dashed line) and the numerical result is shown
in the inset of Fig. 2.

B. Granular media

To obtain a broad understanding of the propulsive charac-
teristics of this elastic propeller in granular media, we first
solve the nonlinear governing equation (8) in granular media
numerically using a fourth-order Runge-Kutta method coupled
with Brent’s method for root finding at each time step.

In Fig. 3(a), we present the propulsive force as a function
of spring constant Kg for a dimensionless actuation amplitude
b = 1. We observe a nonmonotonic variation of the propulsive
force as a function of Kg. The maximum propulsive force is
achieved when Kg ≈ 1.3 with F ≈ 0.85.

In the insets of Fig. 3(a), we show the time evolution of θ

in granular media for various value of Kg. While the response
of θ to a harmonic actuation in viscous fluids always results in
a smoothly varying flapper, regardless of Kv (see Sec. III A),
the response of θ in granular media displays distinct features
in different regimes of Kg. When the characteristic granular
force dominates the elastic force (Kg = 0.1), the evolution of
θ has a smooth response [Fig. 3(a), inset i]. The evolution of
the angle gradually approaches that of a square wave when the
spring becomes stiffer [as Kg increases, Fig. 3(a), inset iii].
The optimal propulsion in granular media is achieved with
the right balance of elastic and granular forces [Kg = 1.3,
Fig. 3(a), inset ii].

In Fig. 3(b), we show the variation of the propulsive force
as a function of the actuation amplitude at various values of
Kg. In general, for a given spring constant Kg, the propulsive
force increases with the actuation amplitude monotonically
and levels off to different values at large amplitudes.

These numerical simulations reveal a rich class of inter-
esting dynamic responses of a flexible propeller in granular
media. To understand the physics and characterize the ob-
served behavior, we perform asymptotic analyses in different
regimes in the following section.

IV. ASYMPTOTIC ANALYSIS

A. Weakly flexible asymptotic solution

We now consider the case in which the torsional spring
is very stiff (weakly flexible), i.e., Kg 	 1. Assuming a reg-
ular series expansion, we write θ = (1/Kg)θ1 + (1/K2

g )θ2 +
(1/K3

g )θ3 + O(1/K4
g ). Substituting the series representation

of θ into the governing equation [Eq. (8)], we obtain

θ1(t) = −1

2
sgn(cos t)

(
1 + CS

CF

cos γ0

)
,

θ3(t) = 1

4
sgn(cos t)

(
1 + CS

CF

sin2 γ0 cos γ0

)
θ2

1 (17)
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FIG. 4. Comparison of the numerical (solid, red) and the leading-
order asymptotic (dashed, blue) solution to θ (t) for Kg 	 1 (or
Kv 	 1 for a viscous fluid) in (a) granular media and (b) viscous
fluids for b = 1. The numerical solutions in the granular media and
viscous fluids corresponds to Kg = 10 and Kv = 10, respectively. The
viscous resistance ratio γ = 2 and the initial condition for numerical
simulation is θ (t = 0) = 0.

while θ2 = 0. Note that the equations for θ1 and θ3 are algebraic
equations (long time solution), which do not admit initial
conditions. The expression for leading-order propulsive force
is F = (1/Kg)F1 + O(1/K2

g ), where

F1 = 1

2

CS

CF

cos γ0

(
1 + CS

CF

cos γ0

)
. (18)

Unlike in a viscous fluid where the propulsive force for
a weakly elastic spring was quadratic in the amplitude of the
forcing, in granular media it is independent of the amplitude of
actuation to leading order [in Kg 	 1, Eq. (18)]. The evolution
of tangent angle from both numerical and asymptotic results in
the weakly flexible regime is shown in Fig. 4(a) with Kg = 10
and b = 1. As a comparison, we also present the numerical and
asymptotic results for the viscous fluid case in Fig. 4(b). We
note that the numerical solution (red solid line) matches well
with the asymptotic solution (blue dashed line) in a viscous
fluid after a short transience.

The leading-order large Kg asymptotic results predict a
square-wave response in θ (t) (blue dashed line, Fig. 4), where
the filament maintains a stationary orientation despite varying
actuation velocity due to the frictional nature of the granular
force model; the torque generated by the velocity-independent
granular force balances the elastic force from the torsional
spring to give rise to the stationary tangent angle. The jumps
in θ (t) occur at the turning points where the actuation velocity
is momentarily zero and the filament changes its direction of
motion instantaneously. In the numerical solution, however,
the filament takes a finite amount of time to adjust its
orientation after the turning points and subsequently achieves
a stationary configuration again. The discrepancy during
these short durations does not affect the propulsive force
significantly when Kg 	 1.

We remark that more refined force models beyond the scope
of this work are required to resolve the detailed physics in the
short durations around the turning points. In particular, any
yield stress in the granular media [34,36] needs to be overcome
when the filament resumes motion from zero velocity. Within
the granular RFT framework, the medium is assumed to be
always yielded with the prescription of actuation velocities.
The yield criterion is expected to change the dynamics more
significantly in scenarios in which forces or torques are
prescribed instead, and one may look for example to the
literature on locomotion in viscoplastic fluids [37–39].

B. Steady propulsion and optimal angle

Finally, we calculate in this section an upper limit for the
propulsive force that can be generated via this simple torsional
spring propeller. Informed by the results in previous sections,
far from the turning points on the oscillation path where the
actuation velocity changes direction, we expect the filament
to reach a stationary configuration with a constant tangent
angle.

Physically, we can expect an angle that maximizes
the propulsive force of this stationary configuration, since
no propulsive force is generated when θ is zero or ±π/2. The
propulsive force generated with this optimal angle represents
an upper limit on the possible propulsive force because any
deviation from this optimal angle, albeit inevitable for practical
periodic motion, would be suboptimal. Here we calculate
this upper limit by enforcing zero angular velocity (θ̇ = 0),
in which case the filament translates in the direction û =
sgn(cos t)ey while û · n = sgn(cos t) cos θ . In this case, (8)
simplifies to

Kgθ + 1

2
sgn(cos t) cos θ

(
1 + CS

CF

√
cos2 θ + tan2 γ0

)
= 0.

(19)

Upon assuming the form θ = −�sgn(cos t), we obtain

Kg� − 1

2
cos �

(
1 + CS

CF

√
cos2 � + tan2 γ0

)
= 0, (20)

while the propulsive force is given by

F = sin �(2Kg� − cos �). (21)

In this steady limit, we determine the optimal angle as

�opt = arccos
√

sin γ0

sin γ0

2 + cos γ0

2

, (22)

which gives rise to a maximum propulsive force of

Fmax = CS
√

sin γ0

CF

(
sin γ0

2 + cos γ0

2

)√
sec γ0 tan γ0(1 + sin γ0)

(23)

while the corresponding spring constant Kopt can be obtained
using Eq. (20). The maximum propulsive thrust obtained in
this regime is given by Fmax ≈ 1.427, with �opt ≈ 64◦ and
Kopt ≈ 0.91 (see the blue solid line, Fig. 5). We note that the
optimal angle can also be recovered from a scaling analysis
that maximizes the horizontal propulsive force from a vertical
velocity of an element of the filament [26].
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FIG. 5. Comparison of the numerical (b = 10) and the large-
amplitude (b 	 1) asymptotic solution to the propulsive force as
a function of spring constant Kg. The black dashed line denotes the
large Kg asymptotic solution.

As a remark, this steady propulsion limit is also equivalent
to the large-amplitude asymptotic limit (b 	 1), where the
filament translates with the stationary configuration without
sampling the turning points. In other words, the leading-order
solution from a regular perturbation expansion in 1/b yields
the same results obtained above. In Fig. 5, we compare the nu-
merical results for b = 10 (dots) with the Kg 	 1 (dashed line)
and b 	 1 (solid line) asymptotic results. The large-amplitude
asymptotic limit represented by a solid blue line should be
interpreted as the upper limit of the propulsive force achievable
by the simple torsional spring propeller mechanism in granular
media. We see that a dimensionless amplitude of b = 10
already yields close-to-maximum propulsive performance.

V. CONCLUSION

In this paper, we have presented a combined analytical
and numerical investigation to probe the effects of flexibility
on propulsion in granular media. While previous works
have considered propellers in granular media with prescribed
strokes or deformations, the strokes of the flexible propeller
considered in this work result from the interaction of elastic and
granular forces, and we investigated how this can be exploited
to maximize propulsive force generation. As a first model,
we considered a torsional spring flapper consisting of a rigid
filament connected to a torsional spring as a reduced order
model that accounts for flexibility. Actuation of the tethered
end in a granular medium led to interesting dynamic features
distinct from those in a viscous fluid.

Due to the frictional nature of the granular force model,
where the force is independent of velocity, given a harmonic
actuation, the filament can develop a nonsmooth square-wave-
like response in its tangent angle when the elastic forces
dominate (large Kg), whereas the response is smoothly varying
when the torsional spring is flexible (small Kg). We explained
the physics underlying this behavior and derived analytical
asymptotic formulas capturing the essential quantitative fea-
tures of the torsional spring flapper, including the optimal
balance of elastic and granular force (Kopt) for maximizing
the propulsive force generation. This work serves as a first
step to reveal interesting propulsive behaviors that can result
from the interplay between body flexibility and its surrounding
granular media. The results may be useful for the development
of synthetic locomotive systems that exploit flexibility to move
through complex terrestrial media.
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