After 2014

16.Real-time position and pose prediction for a self-propelled undulatory swimmer in 3D space with artificial lateral line system. Liu, Ruosi, Yang Ding, and Guangming Xie. Bioinspiration & Biomimetics (2024). PDF

15.Artificial Tendons Improve Fault-Tolerance of Robotic Arms Under Free-swinging Failures. Yue, Qiang, Yang Ding. 2024 the 4th International Conference on Computer, Control and Robotics (ICCCR), pp.274-283. IEEE, 2024. PDF

14.Table-Top Platform of a Large Scale Underwater Swarm. Fu, Rong, Yang Ding. 2023 9th International Conference on Mechatronics and Robotics Engineering (ICMRE), pp. 106-111. IEEE, 2023. PDF

13.Decoupling and Reprogramming the Wiggling Motion of Midge Larvae Using a Soft Robotic Platform. Neng Xia, Bowen Jin, Dongdong Jin, Zhengxin Yang, Chengfeng Pan, Qianqian Wang, Fengtong Ji, Veronica Iacovacci, Carmel Majidi, Yang Ding and Li Zhang. Advanced Materials, 34(17), p.2109126 (2022). PDF

12.Speedup of self-propelled helical swimmers in a long cylindrical pipe. Ji Zhang, Kai Liu and Yang Ding. Chin. Phys. B 31, 014702 (2022)PDF

11.An effective and efficient model of the near-field hydrodynamic interactions for active suspensions of bacteria. Bokai Zhang, Premkumar Leishangthem, Yang Ding, and Xinliang Xu. Proceedings of the National Academy of Sciences, Volume 118, No. 28,  e2100145118.(2021) PDF

10.Tail shapes lead to different propulsive mechanisms in the body/caudal fin undulation of fish. Song J, Zhong Y, Du R, Yin L, Ding Y. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.(2020) PDF

9.Nonlocal shear-thinning effects substantially enhance helical propulsion, Ebru Demir, Noah Lordi, Yang Ding and On Shun Pak, Physical Review Fluids, Volume 5, No.11, 111301(2020) PDF

8.3D computational models explain muscle activation patterns and energetic functions of internal structures in fish swimming, Tingyu Ming, Bowen Jin, Jialei Song, Haoxiang Luo, Ruxu Du and Yang Ding, Plos Computational Biology, Volume 15, issue:9e1006883.(2019) PDF (Cover)(Supplementary Information: S1 AppendixS2 AppendixS3 AppendixS1 Fig, S1 VideoS2 VideoS3 VideoS4 VideoS5 Video.)

7.An experimental study on the fish body flapping patterns by using a biomimetic robot fish, Fengran Xie, Zheng Li, Yang Ding, Yong Zhong and Ruxu Du, IEEE Robotics and Automation Letters, Volume 5, Issue:1, 64-71.(2019) PDF

6.Three-dimensional modeling of a fin-actuated robotic fish with multimodal swimming, Wei Wang , Xia Dai, Liang Li, Banti Gheneti, Yang Ding, Junzhi Yu, and Guangming Xie, IEEE/ASME Transactions on Mechatronics, Volume 23, Issue:4, 1641-1652.(2018) PDF

5.Transition and formation of the torque pattern of undulatory locomotion in resistive force dominated media, Tingyu Ming and Yang Ding, Bioinspiration & Biomimetics, Volume 13, Issue: 4, 046001.(2018) PDF  (Supplementary Information)(Supplementary videos: S1S2S3S4S5S6S7S8S9S10S11S12)

4. Analysis of micro-fluidic tweezers in the Stokes regimeLonghua Zhao, Li Zhang and Yang Ding, Physics of Fluids, Volume 30, Issue:3, 10.1063/1.5017753.(2018) PDF

3. Hydrodynamics of larval fish quick turning: A computational studyJialei Song, Yong Zhong, Haoxiang Luo, Yang Ding and Ruxu Du, Proc IMechE Part C:J Mechanical Engineering Science, Volume 232, issue:14, 2515-2523.(2017) PDF

2. Propulsion via flexible flapping in granular media, Zhiwei Peng, Yang Ding, Kyle Pietrzyk, Gwynn J. Elfring, and On Shun Pak, Phys. Rev. E, Volume 96, issue:1, 012907.(2017) PDF

1. Selective particle capture by asynchronously beating cilia, Yang Ding and Eva Kanso, Physics of Fluids, Volume 27, Issue:12, 10.1063/1.4938558.(2015) PDF

Before 2014

15. Cilia beating patterns are not hydrodynamically optimal, Hanliang Guo, Janna Nawroth, Yang Ding, and Eva Kanso, Physics of Fluids, Volume 26, Issue:9, 10.1063/1.4894855.(2014) PDF

14. Mixing and transport by ciliary carpets: a numerical study, Yang Ding, Janna C. Nawroth, Margaret J. McFall-Ngai and Eva Kanso, Journal of Fluid Mechanics, Volume 743, 124-140.(2014) PDF

13. Swimming in the desert, Yang Ding, Chen Li, and Daniel I. Goldman, Physics Today, Volume 66, Issue:11, 68-69.(2013) PDF

12. Lift and drag in intruders moving through hydrostatic granular media at high speeds, Fabricio Q. Potiguar and Yang Ding, Physical Review E, Volume 88, issue:1, 012204.(2013) PDF

11. Emergence of the advancing neuromechanical phase in a resistive force dominated medium, Yang Ding, Sarah S. Sharpe, Kurt Wiesenfeld, and Daniel I. Goldman, Proceedings of the National Academy of Sciences, Volume 110, issue:25, 10123-10128.(2013) PDF

10. Geometric visualization of self-propulsion in a complex medium, Ross Hatton, Yang Ding, Howie Choset, and Daniel I. Goldman, Physical Review Letters, Volume 110, 078101.(2013) PDF

9. Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus, Sarah S. Sharpe, Yang Ding and Daniel I. Goldman, Journal of Experimental Biology, Volume (2012) PDF

8. Mechanics of undulatory swimming in a frictional fluid, Yang Ding, Sarah S. Sharpe, Andrew Masse, Daniel I. Goldman, Plos Computational Biology, Volume 8, issue:12, e1002810.(2012) PDF

7. Undulatory swimming in sand: experimental and simulation studies of a robotic sandfish, Ryan D Maladen, Yang Ding, Paul B Umbanhowar and Daniel I Goldman, The International Journal of Robotics Research, Volume 30, issue:7, 793-805.(2011) PDF

6. Granular lift forces predict vertical motion of a sand-swimming robot, Ryan D. Maladen, Paul B. Umbanhowar, Yang Ding, Andrew Masse, and Daniel I. Goldman, IEEE International Conference on Robotics and Automation, 1398-1403.(ICRA)( 2011) PDF

5. Comparative studies reveal principles of movement on and within granular media, Yang Ding, Nick Gravish, Chen Li, Ryan D. Maladen, Nicole Mazouchova, Sarah S. Sharpe, Paul B. Umbanhowar, and Daniel I. Goldman, IMA Workshop on Locomotion, Volume 155, 281-292.(2011) PDF

4. Drag induced lift in granular media, Yang Ding, Nick Gravish and Daniel I. Goldman, Physical Review Letters, Volume 106, 028001.(2011) PDFmovie_1movie_2,movie_3

3. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming,  Ryan D. Maladen, Yang Ding, Paul B. Umbanhowar, Adam Kamor, and Daniel I. Goldman, J. R. Soc. Interface, Volume 8, 1332–1345.(2011) PDF (journal cover

2. Biophysically inspired development of a sand-swimming robot, Ryan D. Maladen, Yang Ding, Paul B. Umbanhowar, Adam Kamor and Daniel I. Goldman, Robotics: Science & Systems conference.(2010) PDF

1. Undulatory Swimming in Sand: Subsurface Locomotion of the Sandfish Lizard, Ryan D. Maladen, Yang Ding, Chen Li, Daniel I. Goldman, Science, Volume 325, issue:5938, 314-318.(2009) PDF