Publications

 

 

 

 

 

 

 

 

After 2014

1. Transition and formation of the torque pattern of undulatory locomotion in resistive force dominated media, Tingyu Ming and Yang Ding, Bioinspiration & Biomimetics, 13, 046001(2018).PDF.(Supplementary Information)(Supplementary videos: S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12)

2. Analysis of micro-fluidic tweezers in the Stokes regimeLonghua Zhao, Li Zhang and Yang Ding, Physics of Fluids, 30, 032006(2018).PDF

3. Hydrodynamics of larval fish quick turning: A computational studyJialei Song, Yong Zhong, Haoxiang Luo, Yang Ding and Ruxu Du, Proc IMechE Part C:J Mechanical Engineering Science, 0(0) 1–9(2017).PDF

4. Propulsion via flexible flapping in granular mediaZhiwei Peng, Yang Ding, Kyle Pietrzyk, Gwynn J. Elfring, and On Shun Pak, Phys. Rev. E 96, 012907 (2017).PDF

5. Selective particle capture by asynchronously beating cilia, Yang Ding and Eva Kanso, Physics of Fluids 27, 121902 (2015).PDF

Before 2014

1. Cilia beating patterns are not hydrodynamically optimal, Hanliang Guo, Janna Nawroth, Yang Ding, and Eva Kanso, Physics of Fluids  26, 091901 (2014).PDF

2. Mixing and transport by ciliary carpets: a numerical studyYang Ding, Janna C. Nawroth, Margaret J. McFall-Ngai and Eva Kanso, Journal of Fluid Mechanics, 743, 124-140 (2014).PDF

3. Swimming in the desert, Yang Ding, Chen Li, and Daniel I. Goldman, Physics Today 66(11), 68 (2013).PDF

4. Lift and drag in intruders moving through hydrostatic granular media at high speeds, Fabricio Q. Potiguar and Yang Ding, Physical Review E, 88, 012204 (2013).PDF

5. Emergence of the advancing neuromechanical phase in a resistive force dominated medium, Yang Ding, Sarah S. Sharpe, Kurt Wiesenfeld, and Daniel I. Goldman, Proceedings of the National Academy of Sciences, 110(25), 10123-10128 (2013).PDF

6. Geometric visualization of self-propulsion in a complex medium, Ross Hatton, Yang Ding, Howie Choset, and Daniel I. Goldman, Physical Review Letters, 110, 078101 (2013).PDF

7. Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus, Sarah S. Sharpe, Yang Ding and Daniel I. Goldman, Journal of Experimental Biology, 216, 260 (2012).PDF

8. Mechanics of Undulatory Swimming in a Frictional Fluid, Yang Ding, Sarah S. Sharpe, Andrew Masse, Daniel I. Goldman, PLoS Comput Biol 8(12): e1002810.(2012).PDF

9. Undulatory swimming in sand: experimental and simulation studies of a robotic sandfish, Ryan D Maladen, Yang Ding, Paul B Umbanhowar and Daniel I Goldman, The International Journal of Robotics Research 2011 30: 793(2011).PDF

10. Granular lift forces predict vertical motion of a sand-swimming robot, Ryan D. Maladen, Paul B. Umbanhowar, Yang Ding, Andrew Masse, and Daniel I. Goldman, IEEE International Conference on Robotics and Automation (ICRA).( 2011).PDF

11. Comparative studies reveal principles of movement on and within granular media, Yang Ding, Nick Gravish, Chen Li, Ryan D. Maladen, Nicole Mazouchova, Sarah S. Sharpe, Paul B. Umbanhowar, and Daniel I. Goldman, IMA Workshop on Locomotion (2011).PDF

12. Drag induced lift in granular media, Yang Ding, Nick Gravish and Daniel I. Goldman, Physical Review Letters, 106, 028001 (2011).PDF (movie_1movie_2,movie_3

13. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming,  Ryan D. Maladen, Yang Ding, Paul B. Umbanhowar, Adam Kamor, and Daniel I. Goldman, J. R. Soc. Interface, 8:1332-1345 (2011).PDF (journal cover

14. Biophysically inspired development of a sand-swimming robot, Ryan D. Maladen, Yang Ding, Paul B. Umbanhowar, Adam Kamor and Daniel I. Goldman, Robotics: Science & Systems conference(2010). PDF

15. Undulatory Swimming in Sand: Subsurface Locomotion of the Sandfish Lizard, Ryan D. Maladen, Yang Ding, Chen Li, Daniel I. Goldman, Science, 314-318(2009).PDF